Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 135, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478096

RESUMO

Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Qualidade de Vida , Gânglios da Base/fisiologia , Substância Negra
2.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
3.
J Neurotrauma ; 40(13-14): 1402-1414, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994490

RESUMO

Abstract Making an appropriate diagnosis and administering effective treatment for hydrocephalus in patients with severe disorders of consciousness (DOC) remains controversial and difficult. Given that the typical symptoms are usually concealed by the limited behavioral responsiveness of patients with severe DOC, hydrocephalus diagnosis is likely to be missed in the clinic. Even if not, the presence of hydrocephalus may reduce the likelihood of DOC recovery, posing a conundrum for clinicians. From December 2013 to January 2023, the clinical data and therapeutic schedule of hydrocephalus in patients with severe DOC at Huashan Hospital's Neurosurgical Emergency Center were studied retrospectively. Sixty-eight patients (mean age [± SD] 52.53 ± 17.03 years, 35 males and 33 females) with severe DOC were included. The hydrocephalus was discovered after computed tomography (CT) or magnetic resonance imaging (MRI) revealed enlarged ventricles in the patients. During hospitalization, patients underwent a surgical treatment that included a ventriculoperitoneal (V-P) shunt and/or cranioplasty (CP) implantation. Following the surgery, an individualized V-P pressure was established based on the patient's ventricle size and neurological function variation. To account for the improvement in consciousness in patients with severe DOC, Glasgow Coma Scale (GCS) and Coma Recovery Scale-Revised (CRS-R) assessments were performed before and after hydrocephalus treatment. All patients with severe DOC had varying degrees of ventricular enlargement, deformation, and poor brain compliance. Approximately 60.3% (41/68) of them had low- or negative-pressure hydrocephalus (LPH or NegPH). Of the patients, 45.5% (31/68) had a one-stage V-P shunt and CP operation performed concurrently, whereas the remaining 37 patients had a single V-P shunt operation performed independently. Besides two patients with DOC who developed surgical complications, 92.4% (61/66) of the survivors showed an improvement in consciousness after hydrocephalus treatment. In patients with severe DOC, LPH or NegPH was common. Secondary hydrocephalus in patients with DOC had been largely ignored, hampering their neurological rehabilitation. Even months or years after the onset of severe DOC, active treatment of hydrocephalus can significantly improve patients' consciousness and neurological function. This study summarized several evidence-based treatment experiences of hydrocephalus in patients with DOC.


Assuntos
Transtornos da Consciência , Hidrocefalia , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Transtornos da Consciência/etiologia , Transtornos da Consciência/terapia , Transtornos da Consciência/diagnóstico , Estado de Consciência , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Resultado do Tratamento
4.
Mol Neurobiol ; 60(1): 183-202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36245064

RESUMO

The dorsolateral striatum (DLS) is the critical neural substrate that plays a role in motor control and motor learning. Our past study revealed a direct histaminergic projection from the tuberomammillary nucleus (TMN) of the hypothalamus to the rat striatum. However, the afferent of histaminergic fibers in the mouse DLS, the effect of histamine on DLS neurons, and the underlying receptor and ionic mechanisms remain unclear. Here, we demonstrated a direct histaminergic innervation from the TMN in the mouse DLS, and histamine excited both the direct-pathway spiny projection neurons (d-SPNs) and the indirect-pathway spiny projection neurons (i-SPNs) of DLS via activation of postsynaptic H1R and H2R, albeit activation of presynaptic H3R suppressed neuronal activity by inhibiting glutamatergic synaptic transmission on d-SPNs and i-SPNs in DLS. Moreover, sodium-calcium exchanger 3 (NCX3), potassium-leak channels linked to H1R, and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) coupled to H2R co-mediated the excitatory effect induced by histamine on d-SPNs and i-SPNs in DLS. These results demonstrated the pre- and postsynaptic receptors and their downstream multiple ionic mechanisms underlying the inhibitory and excitatory effects of histamine on d-SPNs and i-SPNs in DLS, suggesting a potential modulatory effect of the central histaminergic system on the DLS as well as its related motor control and motor learning.


Assuntos
Histamina , Neurônios , Animais , Camundongos , Corpo Estriado/metabolismo , Histamina/farmacologia , Neurônios/metabolismo , Canais de Potássio , Receptores Histamínicos H1/metabolismo , Transmissão Sináptica
5.
Neurosci Bull ; 39(1): 138-162, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35804219

RESUMO

Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.


Assuntos
Lesões Encefálicas , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/etiologia , Lesões Encefálicas/complicações , Estado de Consciência , Neuroimagem
6.
Br J Pharmacol ; 180(10): 1379-1407, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36512485

RESUMO

BACKGROUND AND PURPOSE: Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH: Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS: A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN → LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS: Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).


Assuntos
Histamina , Parvalbuminas , Animais , Globo Pálido/metabolismo , Neurônios , Receptores Histamínicos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo
7.
Front Immunol ; 13: 855701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392083

RESUMO

Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Lesões Encefálicas Traumáticas/complicações , Humanos , Inflamação , Doenças Neuroinflamatórias , Proteômica
8.
BMC Neurosci ; 20(1): 63, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870319

RESUMO

BACKGROUND: Autophagy is considered to be another restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin induces autophagy in colon cancer and hepatoma cells, there has not been any direct evidence of whether melatonin is capable of inducing autophagy in human glioma cells. RESULTS: In the present research, we report that melatonin or its agonist, agomelatine, induced autophagy in A172 and U87-MG glioblastoma cells for a concentration-and time-dependent way, which was significantly attenuated by treatment with luzindole, a melatonin receptor antagonist. Furthermore, by suppressing autophagy at the late-stage with bafilomycin A1 and early stage with 3-MA, we found that the melatonin-induced autophagy was activated early, and the autophagic flux was complete. Melatonin treatment alone did not induce any apoptotic changes in the glioblastoma cells, as measured by flow cytometry. Western blot studies confirmed that melatonin alone prominently upregulated the levels of Beclin 1 and LC3 II, which was accompanied by an increase in the expression of Bcl-2, whereas it had no effect on the expression of Bax in the glioblastoma cells. Remarkably, co-treatment with 3-MA and melatonin significantly enhanced the apoptotic cell population in the glioblastoma cells, along with a prominent decrease in the expression of bcl-2 and increase in the Bax expression levels, which collectively indicated that the disruption of autophagy triggers the melatonin-induced apoptosis in glioblastoma cells. CONCLUSIONS: These results provide information indicating that melatonin may act as a common upstream signal between autophagy and apoptosis, which may lead to the development of new therapeutic strategies for glioma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Melatonina/farmacologia , Acetamidas/farmacologia , Apoptose/fisiologia , Autofagia/fisiologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioblastoma/fisiopatologia , Humanos , Macrolídeos/farmacologia , Melatonina/agonistas , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Triptaminas/farmacologia
9.
Neuroimage Clin ; 22: 101741, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30878611

RESUMO

Resting-state functional MRI (R-fMRI) research has recently entered the era of "big data", however, few studies have provided a rigorous validation of the physiological underpinnings of R-fMRI indices. Although studies have reported that various neuropsychiatric disorders exhibit abnormalities in R-fMRI measures, these "biomarkers" have not been validated in differentiating structural lesions (brain tumors) as a concept proof. We enrolled 60 patients with intracranial tumors located in the unilateral cranialcavity and 60 matched normal controls to test whether R-fMRI indices can differentiate tumors, which represents a prerequisite for adapting such indices as biomarkers for neuropsychiatric disorders. Common R-fMRI indices of tumors and their counterpart control regions, which were defined as the contralateral normal areas (for amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and degree centrality (DC)) and ipsilateral regions surrounding the tumors (for voxel-mirrored homotopic connectivity (VMHC)), were comprehensively assessed. According to robust paired t-tests with a Bonferroni correction, only VMHC (Fisher's r-to-z transformed) could successfully differentiate substantial tumors from their counterpart normal regions in patients. Furthermore, ALFF and DC were not able to differentiate tumor from normal unless Z-standardization was employed. To validate the lower power of the between-subject design compared to the within-subject design, each metric was calculated in a matched control group, and robust two-sample t-tests were used to compare the patient tumors and the normal controls at the same place. Similarly, only VMHC succeeded in differentiating significant differences between tumors and the sham tumor areas of normal controls. This study tested the premise of R-fMRI biomarkers for differentiating lesions, and brings a new understanding to physical significance of the Z-standardization.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Oncol Rep ; 35(1): 284-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26530859

RESUMO

miR-124 and Capn4 are aberrantly expressed in glioblastoma multiforme (GBM) tissues. In the present study, we investigated miR-124 and Capn4 expression in GBM tissue specimens. The role of miR-124 and Capn4 in the migration and invasion of glioma cells in vitro was also examined. miR-124 and Capn4 expression in 20 GBM and 6 control brain specimens was examined using RT-qPCR and immuno-blotting. Data from The Cancer Genome Atlas were retrieved. Candidate mRNA target sites of miR-124 were predicted using TargetScan/microRNA and binding was examined using dual luciferase reporter assays. The U87 and U251 cells were transfected with scrambled microRNA, miR-124 mimics and/or pLenti-Capn4 prior to wound­healing and Transwell invasion assays. Proteins involved in the epithelial-mesenchymal transition were examined using immunoblotting. The results showed that miR-124 was significantly downregulated in GBM tissues. Immunoblotting showed a marked upregulation of Capn4 expression in GBM tissues. The Spearman's correlation analysis revealed a negative association between miR-124 expression and Capn4 protein levels. TargetScan/microRNA predicted the miR-124 binding site in the nucleotide 440-446 region within the Capn4 3'-UTR, which was confirmed by luciferase assays. Wound­healing and Transwell invasion assays demonstrated that Capn4 downregulation or miR-124 mimics suppressed the migration and invasion of glioma cells. Capn4 downregulation or miR-124 mimics reduced the level of phospho-FAK and MMP2, vimentin and N-cadherin in U87 cells. In conclusion, miR-124 was found to suppress the migration and invasion of glioma cells in vitro via Capn4.


Assuntos
Neoplasias Encefálicas/patologia , Calpaína/genética , Glioblastoma/patologia , MicroRNAs/genética , Regiões 3' não Traduzidas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Técnicas In Vitro , MicroRNAs/metabolismo , Invasividade Neoplásica
11.
J Neurooncol ; 126(1): 19-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476730

RESUMO

Tripartite motif (TRIM) proteins are involved in tumorigenesis. Here, we examined the expression, biological function, and clinical significance of tripartite motif containing 28 (TRIM28) in glioma, a locally aggressive brain tumor. First, TRIM28 expression was significantly higher in glioma (n = 138) than in non-glioma controls (n = 6). TRIM28 expression was positively correlated with tumor malignancy, and associated with poor overall survival (OS) and progression-free survival (PFS). Notably, TRIM28 expression was negatively correlated with p21 expression in patients with glioblastoma multiforme (GBM). A multivariate analysis that included relevant measures indicated that high TRIM28 expression is an independent prognostic factor for poor OS and PFS in GBM patients. In experiments with cultured glioma cells, down-regulating TRIM28 with shRNA increased p21 expression, and induced cell cycle arrest at the G1 phase. In a xenograft model, down-regulating TRIM28 suppressed tumor growth. These results indicate that over-expression of TRIM28 is associated with poor outcome in glioma patients.


Assuntos
Neoplasias Encefálicas/diagnóstico , Regulação da Expressão Gênica/genética , Glioma/diagnóstico , Proteínas Repressoras/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/mortalidade , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Progressão da Doença , Feminino , Glioma/genética , Glioma/mortalidade , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Análise de Sobrevida , Fatores de Tempo , Proteína 28 com Motivo Tripartido , Ensaios Antitumorais Modelo de Xenoenxerto
12.
CNS Neurosci Ther ; 20(6): 521-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24628706

RESUMO

AIMS: Recent evidence indicates that the increased expression of calpain small subunit 1 (Capn4) is associated with tumorigenesis. This study was designed to explore the role which Capn4 plays in human glioma. METHODS: We detected the expression of Capn4 by immunohistochemistry in tissue microarrays and tissue samples. Following the down-regulation of Capn4 in glioma cell lines by a specific short hairpin RNA, the function of Capn4 in invasion, migration, and proliferation was assessed. We then evaluated the prognostic role of Capn4 using univariate and multivariate analysis in 94 glioblastoma (GBM) patients. RESULTS: Glioma tissues exhibited notably higher expression of Capn4 compared with control brain tissues and was positively correlated with histological malignancy. The down-regulation of Capn4 in glioma cells led to a decrease in invasion and migration in vitro. Through univariate analysis, the prognosis of GBM patients with Capn4 overexpression was significantly poorer with respect to progression-free survival (PFS) and overall survival (OS). Based on the results of the multivariate analysis, Capn4(high) was demonstrated to be a negative independent prognostic indicator for PFS and OS in GBM patients. CONCLUSION: The overexpression of Capn4 is a novel negative prognostic marker, and Capn4 may be used as a new target in therapeutic strategies for human glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Calpaína/metabolismo , Glioma/metabolismo , Glioma/patologia , Adolescente , Adulto , Idoso , Calpaína/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Análise Serial de Tecidos , Cicatrização , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...